FastView freeware utility for VDF 10/11

Intro

The FastView program is an alternative to dbExplorer and may be used to view and change the data in your tables. Just as with dbExplorer you are capable of entering data that are not validated through the rules implemented in your DataDictionary objects, so take care. It was not meant to be deployed with end users.

Compared to dbExplorer the main difference is that you are able to construct views using related tables and header/detail views with one parent record and a number of child records in a grid below.

As an alternative – when you have the source code - you may compile your workspace DD’s into it and have it use all the rules and validations in there. In that case you may consider it up to the DD’s to maintain the consistency of your database.

You may create a view by selecting ‘Create new view’ from the ‘File’ pull down. Once created you may edit it by right clicking the view panel and select ‘Edit properties’.

A view definition may be saved to a file (extension .fvw) that will be placed in a subdirectory of your data directory called – you’ve guessed it – FastView. This directory is created automatically the first time you point FastView to a workspace.

You may also define a collection of view definitions to be opened at one time. A view collection is defined by the views currently opened. The views are saved together with their location and information about whether they where minimized or not.

If you name such a collection ‘Default’, it will open automatically when FastView is pointed to that workspace.

Prompt lists are available whenever focus is with an indexed field if you press Ctrl+F as well as a popup calendar on date fields (Ctrl+D). View for re-indexing damaged files is also at hand. And finally, VDFQuery is included and accessible by pressing Ctrl+P.

Creating a view definition

To create a new view click ‘File’, and ‘Create new view’. A wizard will appear.

[image: image1.png]
On the first wizard page you should enter a view title. If omitted the text that appears in the caption bar of the view will be the display name of the main table of the view.

Select view type. Not much to say about that.

If FastView is in its ‘home environment’ you may specify whether workspace DD classes should be used (default). In this case, it isn’t.

Page 2 lets you specify which table(s) should be used in the view.

[image: image2.png]
Page 3 (and 4 if H/D view type) lets you select which fields should be represented in the view. Note that text fields are not allowed in grids.

[image: image3.png]
The last page simply lets you check a checkbox if you want the definition to be saved to disk.

[image: image4.png]
Click finish and the view will appear (I selected all the fields).

[image: image5.png]
Let us create one more view, but this time let’s make it a H/D type view (that is one record at the top and a number of records from a child table in a grid below.

[image: image6.png]
I want it to use Order header as ‘header’ record and order lines as ‘detail’ records. Note that when H/D type view has been selected in the first page, only tables with ‘sensible’ child tables may be selected as ‘main’ table, and only the associated child table(s) may be selected as such.

[image: image7.png]
I now select a number of fields and this monster view occurs:

[image: image8.png]
Though impressive, its composition lacks a bit to be desired. I now right click the view and select ‘Properties’. This panel pops up:

[image: image9.png]
Instead of explaining in details I will simply change its contents to this:

[image: image10.png]
which will make the view appear like this:

[image: image11.png]
Though still not a ‘van Gogh’ I’d say it is a lot more agreeable. And with some more effort I could align the objects better (by using alternative settings in the snap column). But I won’t, because then it won’t be fast as in FastView.

Note how the ‘order total’ nicely matches the sum of all the ‘extended price’s that in turn are a multiplum of ‘qty ordered’ and ‘price’. If at this point I the changed the ‘qty ordered’ of ‘The running Pulse-o-meter’ from 1 to 2 and save, I would see the ‘Extended price’ and the ‘Order total’ not changing accordingly. I would thus have broken the validity of my data.

This demonstrates my point about having to be careful when using FastView to edit your data. At least when workspace DD’s have not been compiled into it, but I’ll get back to that later.

How does it work?

When FastView creates a view it does so by dynamically creating instances of dbViews, dbForms, dbGrids, DataDictionary’s etc, interconnecting it all according to the rules of the Visual DataFlex application framework.

The main difference between the views that FastView generates and the ones you as a programmer are creating in the IDE is that the IDE generates code, that imports all the restrictions and functionality you have put in the DataDictionary classes. FastView uses bare DD’s that by default imposes no restrictions and no keeping of consistency in your database.

It is true that in FastView you may specify DD_CAPSLOCK and DD_NOENTER and a few other things (on a view basis). But that’s about it. Or is it?

Home environment

In order to create a version of FastView especially suited for a particular workspace you must copy the FastView.src file (and FastView.cfg to include bitmap resources) to the AppSrc directory of that WS.

This is what the FastView.src file looks like. Note in particular the line saying “…Put your DD classes here…” (towards the bottom).

#HEADER

// The section embraced by the #HEADER and the #ENDHEADER symbols

// represents 99% of the code making up FastView. This may be compiled

// once and for all.

Use FastView1.pkg

#ENDHEADER

RegisterRestrictions:

 // The next 5 lines may be set to DFTRUE (enable) or DFFALSE (disable).

 // If a parameter is set to DFTRUE it may still be disabled by passing

 // the commented symbol that appears after each line on the FastView

 // command line:

 // Should FastView check for new package files (offering to re-compile)?

 set FVSetupValue FVSETUP_OLD_PKG_CHECK to DFFALSE // -nopkgcheck

 // Allow the user to edit data?

 set FVSetupValue FVSETUP_USER_CHG_DATA to DFTRUE // -readonly

 // Allow the user to disable WS data dictionaries (thus bypassing all

 // checks and more)?

 set FVSetupValue FVSETUP_USER_BYPASS_WS_DD to DFTRUE // -noddbypass

 // Allow user to change workspace?

 set FVSetupValue FVSETUP_USER_CHG_WS to DFTRUE // -nowschange

 // Allow user to create new or edit existing views?

 set FVSetupValue FVSETUP_USER_EDIT_VIEWS to DFTRUE // -user

 // Force FastView to point to a particular WS on startup (blank: use current WS):

 set FVSetupValue FVSETUP_WORKSPACE to "" //"DAW.Sample Applications.Order"

 set FVSetupValue FVSETUP_WORKSPACE_NAME to "Order Entry sample"

return

DEFINE_OBJECT_GROUP OG_WorkspaceDDs

 // ...Put your DD classes here...

 Use FV_OrderEnt.dd // This is my example

END_DEFINE_OBJECT_GROUP

RegisterReferencedTables:

 CALL4200TIMES // Don't ask...

return
Apart from some configuring – that I hope is self-explanatory – you can see that I have used a package called FV_OrderEnt.dd towards the end of the file. This package contains the DD definitions of the order entry sample workspace, and it is very important that it be placed exactly there between the DEFINE_OBJECT_GROUP and END_ DEFINE_OBJECT_GROUP commands. This will enable FastView to turn them on and off as needed (point FastView to the Order Entry data, point it away, point it back again).

The FV_OrderEnt.dd package in turn looks like this:

// These are just needed:

Use Help_Ids.inc // Developer should provide this file of help context links.

Use Std_Help.pkg

// Include the WS DataDictionary classes:

Use VENDOR.DD

Use INVT.DD

Use CUSTOMER.DD

Use SALESP.DD

Use ORDERHEA.DD

Use ORDERDTL.DD

// Tell FastView what classes to use for which tables:

set DataDictionary_Class Customer.File_Number to U_Customer_DataDictionary

set DataDictionary_Class Invt.File_Number to U_Invt_DataDictionary

set DataDictionary_Class Orderdtl.File_Number to U_Orderdtl_DataDictionary

set DataDictionary_Class Orderhea.File_Number to U_Orderhea_DataDictionary

set DataDictionary_Class Salesp.File_Number to U_Salesp_DataDictionary

set DataDictionary_Class Vendor.File_Number to U_Vendor_DataDictionary
The two lines at the beginning are not interesting, they are just needed. Then comes the DD classes themselves and finally a group of lines that informs FastView to use the Customer_DataDictionary class whenever it needs a DD object for the Customer table asf.

Pre-compile FastView.src before compiling it. This will give you a minimum re-compile time.

If you hereafter point FastView to the ‘Order entry sample’ and create a few views, you will see all the features of the sample DD classes (field labels, prompt lists, validations, status help, appearance, what have you) unfold. This is because the order entry DD classes have been compiled into the FastView program and it automatically detects when you point it to its ‘home environment’.

Whenever FastView decides that it is home, a ‘DD’ will appear in the main caption bar of the program.

If I reopened the view I created in the first section, it would now look like this:

[image: image12.png]
It would be fair at this point to admit, that I went to the properties panel and changed dbForm to dbComboForm for the ‘Terms’ and ‘Ship via’ fields, but that is the only thing I did.

This view is now fully functional with the automatic updating of line and order totals, field masks, prompt lists and validations as defined in the DD classes of the tables.

Sidecar fields

Once you get to know the program you will at some point wonder what a ‘sidecar’ field is. A sidecar field is a field that should have been in the grid, but there wasn't room. Therefore it goes in the 'grid sidecar'. Such fields may only be added via the 'edit properties' panel (and not by the wizard that initially created it). To enter this panel right click on the view panel. Just remember that it only applies to views that have a dbGrid object in them.

Sidecar fields will appear below the grid to which they are connected in a group labelled ‘Current row data’.

And while we’re at it: dbGrids in FastView will only take up to 10 fields. If you need more than 10 fields in a grid you will have to use the sidecar option.

If I decided that I wanted to see vendor data for the item in what ever order line I was pointing to I would go to the property panel and select some vendor fields and put them in the grid sidecar:

[image: image13.png]
Since the DD classes are now available FastView was clever enough to automatically use a dbComboForm to represent the ‘State’ field.

The view now appears like this:

[image: image14.png]
The data in the ‘Current row data’ will now keep itself synchronized with the current line of the grid.

Editing a view definition

Use the mouse to right-click on the view panel to enter the ‘edit properties’ panel. Apart from being able to change a few things that were already defined in the ‘Create view’ wizard, you will notice that each field has some properties.

The fields are divided into three categories that have been placed on their own tab pages. Main table fields, child table fields and Grid sidecar fields

The label column lets you enter a label if you do not like the default label FastView has attached to it. Or you may specify that the field should have no label at all by checking the ‘No lbl’ column

Use the ‘snap’ column to change the position of a field (only active if the associated object is not a grid). The default value is ‘NewLine’ which will place the field on the next available line in the view. Change it to ‘Right’ to have it appear to the immediate right of the previous field or ‘Space’ to add a little space but still to the right. ‘Down’ will place it under the previous field.

Even if it is possible to do otherwise, dbEdit objects should never appear next to other objects. This may confuse the automatic positioning of the objects as well as the resizing mechanism.

The ‘SzX’ and ‘SzY’ columns are only active if the associated field is a text field and the ‘Delta X’ column may be used to add or subtract horizontal size to the object.

The columns labelled ‘NoEnter’ and ‘Caps’ may be used to grey out the field or make it accept uppercased characters only respectively.

If a field is indexed you may always press ctrl+f to have FastView generate a selection list for you. But if you check the ‘Prompt’ column it will also make a small button on the field to have it call this prompt list.

Finally we have the ‘Class’ column. It really only makes sense to change the class of a field if workspace DD’s have been compiled into it. But you may of course change a dbForm to a dbSpinForm on a date field or if you have a field that contains 0 and 1 only, you could use a dbCheckBox to represent it.

Changing table definitions

Whenever you change the definition of a table (using Database Builder) you are potentially invalidating existing FastView definitions that you may have created. In such an event you must be prepared to delete the contents of the FastView directory (of that name) created under your data directory.

Hot keys

While in a FastView view use the following keys:

Ctrl+F for prompt lists in indexed fields

Ctrl+P to run a report on the current table

Ctrl+D for a calendar on date fields

Ctrl+N to clone the current view

Ctrl+F1 for a DD inspector like thing

Ctrl+I For table definition (While anywhere that has to do with selecting tables)

Command line parameters

Using command line parameters you may create FastView shortcuts for specific purposes. FastView understands these:

-noload

Disables the automatic loading of views on start up

-ws <wskey>

Makes FastView load the specified WS on start up (instead of the default)

-filelist <fl>

FastView loads the specified <fl> (full path to a filelist.cfg) on start up

-collection <collection name>

FastView loads the view collection of that name on start-up

-view <view name>

FastView loads the specified view on start-up

Each of the following only has an impact if the feature they turn off, was enabled in the compiled program.

-nopkgcheck

FastView does not check for changes in DD packages (Disables the ‘source code has changed’ warning)

-readonly

User is not allowed to edit data.

-noddbypass

User is not allowed to disable using the workspace DD’s (when they are present)

-nowschange

User is not allowed to point FastView to another WS

-user

Disables the editing and creating view definitions (‘security by obscurity’ as Wil van Antwerpen

points out).

-Sture Andersen

(That’s not a command line parameter. It’s just me signing off)

Sture ApS

Ndr Fasanvej 92 st tv

DK-2000 Frederiksberg

Denmark

Tel: +45 40 59 70 20

