[image: image3.png]VDFQuery 2.0 for VDF 8, page 1

VDFQuery

version 2.3
for

Visual DataFlex 10/11

This document describes the VDFQuery ad hoc report generator and some of the support packages that are supplied with it.

The packages in the VDFQuery upload available from the FTP site of Data Access were programmed by me and are to be considered 'public domain' and may be distributed freely as is or as part of a product including these files with no further permission than this statement.

I would very much prefer that questions and suggestions be made at the Data Access newsgroups on this address.

dac-public-newsgroups.visual-dataflex-support

This way I avoid having to deal with the same issues too many times and at the same time it will make developers aware of this free utility (and that's what it's all about).

I owe thanks to all the developers from all over the world who translated the string constants present in the source code and the ones that brought attention (and fixes) to errors. Their names are mentioned in the packages.

Sture Andersen

Copenhagen, February 2005

4Installation advice

DataFlex 3.2
4
VDFGraph
4
DFMatrix
5
The components
6
VDFQuery
6
How to Add VDFQuery to an IDE Maintained VDF program
6
Calculated columns
7
Expression as selection criteria
7
Disabling calculated columns and expression as criteria
7
Reporting by an ad-hoc-index
7
Hiding files from the user
8
Hiding fields from the user
8
Inserting functions as printable (and selectable) fields
8
Programmable indices
9
A little bit on how to use it
10
The HTML feature
10
Field names
11
Tag files
11
Labels in DD classes
11
Specifying labels without DD classes
11
Alternative ways to activate VDFQuery
11
A note on the VDFQuery source code
12
VDFSort
13
Support packages
17
Date routines (DATES.UTL)
17
Global functions and procedures
17
The popup calendar
20
The test program (TestDate.df8 & TestDate.df3)
21
String manipulation (STRINGS.UTL)
23
Converting numbers to strings
23
General purpose
23
Programming using Arrays
26
Storing and retrieving values
26
A quick comment
26
Resetting an array
27
Counting the items
28
Sorting the items
28
Using the Array for class building
30
Advanced use (1.5 dimensional arrays)
31
The Item_Property command
32
2-dimentional arrays
33
Known index maximum
33
Unknown index maximum
35
Appendices
36
Appendix A: What’s new
36
VdfQuery
36
New in version 1.7 (December 2001)
37
New in version 1.6 (August 2001)
37
New in version 1.5 (November 2000)
37
New in version 1.3b (June 1999)
37
New in version 1.3 (April 1999)
38
New in version 1.2b (October 1998)
38
New in version 1.1 (July 1998)
38
Appendix B: Virtual Print Engine (VPE)
39
VPE in general
39
Appendix C: Language dependant constants
41

Installation advice

From experience with previous versions of VDFQuery, I have learned that programmers like to put the source files of this download in a lot of different directories and on top of the standard pkg directory of a VDF installation. I (and they) have also learned that this will give problems as new versions of VDFQuery are made available or new versions of DataFlex are released. Therefore it is my recommendation that all the files are unpacked in a single directory residing under the VDF root, i.e. X:\VDF11\VDFQuery. Then you will know where it is once and for all.

If you are upgrading from a previous version rename the existing directory before creating a new VDFQuery directory.

Then follow the steps in “How to add VDFQuery to a IDE maintained program” in order to have access to it.

Should you at some point decide to eliminate the use of VDFQuery (and my packages in general) from your program, the simplest way to do so is to remove the VDFQuery directory from the MakePath of the compiler. Then compile your application and remove or change all lines that generate errors (because my packages can no longer be seen by the compiler).

DataFlex 3.2

If you have downloaded VDFQuery to get hold of DFMatrix for DF 3.2 please follow the instructions in dfm.doc, which covers both the VDF version and the character mode version of DFMatrix.

VDFGraph

[image: image4.png]
Previously I have released a separate package called VDFGraph. This is a utility that will let you draw graphics on the screen (through hard work on your behalf, it is not end-user ready such as VDFQuery). VDFGraph and VDFQuery have a number of support packages in common. As I change these often I'm am getting an increasing amount of e-mails from developers using both extensions experiencing a version problem, because VDFGraph and VDFQuery are out of synchronization.

In order to avoid this, I have now chosen to include the VDFGraph in the VDFQuery upload which will make sure that in the future such problems does not arise. The name of the upload will continue to be VDFQuery, but you will know that it also includes VDFGraph (as well as VDFSort).

This means that the packages needed to compile an application that uses VDFGraph are also present when you have installed VDFQuery (vdfgraph.utl and a few more). In addition you will find a Word document with documentation (vdfgraph.doc) and the source code for demo program (grdemo.src).

DFMatrix

[image: image1.png]
Like VDFGraph DFMatrix has got a lot of source code in common with VDFQuery. For that reason beginning with VDFQuery 1.6 the source code for a thing called DFMatrix is also part of the upload. It is a collection of tools that I have developed over the years for different customers. It lets you compare database definitions and perform restructures to achieve uniformity. It facilitates synchronizing source code directories and searching for files and more. And it compiles to VDF 10/11 or DF 3.2 (UNIX/LINUX/DOS). It is documented in a separate document called dfm.doc.

BTW, another feature of DFMatrix is the ability to load a set of definitions and save them to one small file (called a FDX file). This file may be sent to another site, where the definitions are now available for inspection or comparing. All versions of DFMatrix share a common format of FDX files so you may generate such a file on a LINUX system and bring it back to a Windows system for inspection or vice versa.

This hopefully will makes remote support of programmers a lot easier.

The components

VDFQuery

VDFQuery is an ad hoc query tool that allows the end-user to perform bottom up queries on the database. The user interface resembles that of the character mode versions of DATAFLEX (DFQUERY). It is meant to be used from inside your application, meaning that it will not be a separate program. It will be a view inside your application. This increases "load speed" and makes it possible to take advantage of the information stored in your DD classes. You may of course make a separate program for it, if you so desire (or simply compile the DBQuery.src file which is also present in the VDFQuery directory).

How to Add VDFQuery to an Studio Maintained VDF program

1.
Create a directory for VDFQuery and place all files into this directory. For this sample assume you have created a directory named c:\VDF11\VDFQUERY

2.
Add VDFQuery to your workspace path.

If you want to be able to add VDFQUERY to all workspaces do the following (this is the suggested method):

· In the IDE Select "Configure..." from the File menu

· Select the "Workspaces" Tab Page from "Configure VDF"

· Add the VDFQuery path to the MakePath list of paths. This is the List titled "System Paths used in Makepath by the compiler.". Add the directory to the end of the list: e.g. c:\vdf11\vdfquery

If you want to only add Query to a single workspace you should add the VDFQuery directory to your AppSrc Path.

· Select Workspace. All components should be closed.

· Select "Modify Workspace" from the "Workspace" menu.

· Select "Workspaces" and find your workspace.

· Alter the AppSrcPath by appending the query directory.

e.g. AppSrcPath was:
c:\VDFWS\Order\Appsrc

 AppSrcPath s/b:
c:\VDFWS\Order\Appsrc;c:\VDF11\VDFQuery

3.
You may now register VDFQuery within a workspace as follows:

· Select "Register External Component" from the "Component" menu.

· Select "Report" as the component type

· Using the Prompt Button next to "Package Name" find the file VDFQuery.rv located in your VDFQuery directory.

· Enter any Description you desire (I suggest "Query")

· Enter Query_vw for Object name. This name is required!

4.
You can now add this query to any program just like you would any other report component. Query will compile into your program and will be available from the program's report View menu.

This is all that is needed to provide your users with VDFQuery access. The rest of this document is about changing or enhancing the way it works, but you can do without it.

If you choose to configure VDFQuery according to the following sections you need to write some code. Instead of spreading VDFQuery specific code all over your source code you could create a file (you could call it VDFQuery.cfg) and put all the customization code in that. You could use this file from within VDFQuery.rv package.

Calculated columns

On the tab page called “Fields” there is a button called “Expression”. Clicking this will enable you to insert a calculated column. You must specify a label, a width and the type of column. If ‘Numeric’ is selected you should also specify the number of decimals.

Clicking the ‘Edit’ button allows you to specify the actual expression. When doing so two things are important:

1. Make sure that the expression is put inside parenthesis.

2. Take care that the return type of the expression is the same as you indicated in the combo form of the previous dialog.

Expression as selection criteria

On the second tab called “Selection” you may click the “Expression” button to enter an integer expression that will be evaluated for each records. If it evaluates to a non zero integer value the record will go in the report. These things should be noted:

1. The integer expression needs to be inside parenthesis.

2. Take care that the return type is integer

3. The expression will only be evaluated if the other criteria (if any) includes the record

4. Selections done in the expression dialog will not be used as basis for report optimization.

Disabling calculated columns and expression as criteria

Simply

set XE "VdfQuery_ExcludeFile" VdfQuery_Expressions_State to DFFALSE

and the ‘Expression’ buttons will not appear.

Reporting by an ad-hoc-index

VDFQuery allows the user to select any of the pre-defined orderings of the selected main table. But it also allows you to select “ad-hoc” whereby the button of the same name is enabled. Clicking this allows you to specify any sequence of fields (including fields from parent tables) that should define the ordering of the output. Break levels may be set accordingly.

Hiding files from the user

VDFQuery has an interface that lets you hide individual files from user. This may be relevant for security reasons or because your filelist.cfg still contains files that are no longer used by your application.

set VdfQuery_ExcludeFile XE "VdfQuery_ExcludeFile" Customer.File_Number to {value}

The VdfQuery_ExcludeFile property for each file may be set to one of three values:

VDFQ_FALSE
This is the default value of course. This means that the file will be accessible via VdfQuery.

VDFQ_TRUE
This means that the file cannot be selected as main file for a query. The file will still appear if it is related to (directly or in-directly) from the main file of the query.

VDFQ_ALWAYS
The file may not be selected as main file and will not appear even if related by any of the files participating in the query.

Hiding fields from the user

VDFQuery also has a feature that lets you hide fields from the user. This may be relevant for security reasons or because your tables have fields that are no longer used by your application.

You can not hide fields that are included in one or more indices because these may be used to break the report. If you want to hide field Customer.Balance insert this line somewhere in your code:

set VdfQuery_ExcludeField XE "VdfQuery_ExcludeField" file_field Customer.Balance to dfTrue

This field will no longer appear as a printable field or as a field that may be used for selection.

If you want to hide the recnum field from all files you can insert this line:

set VdfQuery_ExcludeField 0 0 to dfTrue // Hide all recnum fields

Inserting functions as printable (and selectable) fields

It is possible to insert functions programmed by you as fields that will appear as printable (and selectable) fields.

To facilitate this a class called cVirtualFields is defined in the FieldInf.pkg package file supplied with VDFQuery. Here is an example (the idea is that you have already opened a data file called Modules):

 object oModules_VF is a cVirtualFields

 set pMainFile to Modules.file_number

 function inverted_code returns string

 function_return (DoSomethingInteresting_1(modules.code))

 end_function

 function inverted_name returns string

 function_return (DoSomethingInteresting_2(modules.name))

 end_function

 send define_field 0 "InvCode" "IC" DF_ASCII 10 0 get_inverted_code

 send define_field 1 "InvName" "IN" DF_ASCII 30 0 get_inverted_name

 end_object
You create an object of the cVirtualFields XE "cVirtualFields" class. Name it in a way that indicates the name of the file to which it will add fields (In the example: Modules). Set property pMainFile to the number of that file.

Declare functions corresponding to your virtual fields within the object.

Finally inform the object of these functions. This is done with the DEFINE_FIELD message:

procedure define_field XE "define_field" integer fld string label string short_label ;

integer type integer length integer points integer function_id
The first parameter fld is the internal number of the virtual field. It is used by VDFQuery as the field ID when you save a report definition to file. This means that you should take care not to change the number of a particular virtual field during the life span of your application. You can think of it the same way that you do about 'real' fields. If you change their numbers you will invalidate existing report definitions.

Parameters label and short label should be self-explanatory. VDFQuery will use the value of these as label and column header respectively.

The type parameter may be any of DF_ASCII, DF_BCD (for numbers), or DF_DATE.

length is the length of the virtual field in characters and is used to calculate a suggested column width when the field is selected for printing.

The points parameter should be the number of decimal points when type is DF_BCD. Otherwise it should be set to 0.

Last but not least the function_id must be the name of the function (prefixed with "get_") that derives the desired value for the field.

The last thing to do is to inform VDFQuery to use THIS object when presenting the user with extra fields in the Modules table:

set FieldInf_VirtualFields_Object XE "FieldInf_VirtualFields_Object" Modules.file_number to (oModules_VF(self))

A function only executes if the corresponding virtual field value is used. And even if the user chooses both to print the virtual field and to select records depending upon its value, the function will only execute once (per record).

It is your responsibility to make sure that your function does not change the value of a record buffer currently used by the report. If your function needs to search in any table you must restore the contents of the record buffer(s) before returning a value.

Programmable indices

It is possible for the programmer to add ‘extra’ indices to the ones already defined as part of the table definition. To do it you need to declare an object of the cVirtualIndices class (available after you have use’d VdfQuery.utl). The mechanism resembles that of the virtual fields (see above). The best way to describe it is via the example on the next page.

For a table called Hours I have added two virtual fields in the upper object called oHours_VF. This is according to the the previous paragraph. I need that object to show you how to have a virtual field (a function) be a part of a virtual index.

The second object is called oHours_VI and is of class cVirtualIndices. This defines three indices of which the first two are composed of normal fields (I am sorry but you have to indicate which fields are in the index by their numbers).

The third virtual index (which is number 2) uses virtual field number 0 as its only segment. The trick to using virtual fields in virtual indices is to add 256 to their number (therefore virtual field number 0 becomes field number 256).

The final thing to do after having declared the cVirtualIndices object is to inform VDFQuery to use that object for extra indices. That is what is done in the very last line of the example.

object oHours_VF is a cVirtualFields // Virtual fields for table Hours

 set pMainFile to hours.file_number

 function hours_weekday returns string

 //Function DateDayName is defined in DATES.NUI

 function_return (DateDayName(hours.work_date))

 end_function

 function hours_amount returns number

 local integer from# to# // This function calculates the time

 move hours.work_from to from# // in hours between fields work_from and

 move hours.work_to to to# // work_to.

 function_return (((to#/100)+(((to#/100.0)-(to#/100))*100/60.0))-;

 ((from#/100)+(((from#/100.0)-(from#/100))*100/60.0)))

 end_function

 // Define a virtual numeric field length 5 with 2 decimals:

 send define_field 0 "Number of hours" "Hours" DF_BCD 5 2 get_hours_amount

 // Define a virtual field of ASCII type, length 7:

 send define_field 1 "Weekday" "Day" DF_ASCII 7 0 get_hours_weekday

end_object

set FieldInf_VirtualFields_Object hours.file_number to (oHours_VF(self))

object oHours_VI is a cVirtualIndices // Virtual indices for table Hours

 send define_index 0 "Check in"

 send add_segment Hours.File_Number 7 // These fields goes into virtual

 send add_segment Hours.File_Number 8 // index 0

 send define_index 1 "Check out"

 send add_segment Hours.File_Number 8 // This field is virtual index 1

 send define_index 2 "Number of hours"

 send add_segment Hours.File_Number 256 // Virtual index 2 is virtual field 0

end_object

set FieldInf_VirtualIndices_Object hours.file_number to (oHours_VI(self))
A little bit on how to use it

· When inserting or deleting fields from the list of selected fields you have to manually adjust the column offsets (using the 'Adjust below' button). When adding a field the column offset and the column width of that field is automatically calculated.

· When selecting fields that contain capslocked data it may be necessary to add to the width of the column.

· It is important that you use the 'Adjust below' button after you select to print to file (printable format). The units change from centimeters to characters, you see.

· Text fields must be placed as the last of the selected fields.

· Expressions must be in parenthesis.
The HTML feature

If you select 'file' as output destination and specify 'HTML' as the format VDFQuery will generate an HTML version of your report.

If in addition to the above you enter a file name with extension '.htm' VDFQuery will launch your Internet browser upon completion displaying your report.

When HTML (or XML) has been specified as file format VDFQuery tries to "execute" the destination file name. This means that if you use the extension ".txt" NotePad will display the HTML source. You may use ".xls" to let Excel have a go at it or ".doc" to export to Word.

When presented with a VDFQuery generated HTML file in this way, Excel (97) may not interpret its contents correctly. The reason is that Excel is told to open a XLS file and therefore expects XLS format. It happily runs along and discovers "Oops, this is not an XLS file, its HTML code" and activates its own HTML interpreter. But too late! Excel has not yet told its HTML interpreter about local date formats and decimal separators and therefore may get the contents of the HTML file wrong. Therefore this way of exporting to Excel may work only in the US. Too bad, it looks real good.

However, outside US (as well as inside of course) it is perfectly possible to open Excel and tell it to open an HTML file via the normal 'Open' dialog. Then everything is interpreted correctly.

Field names

Tag files

By default VDFQuery will suggest field names that are a mechanical adaptation of the corresponding names in the TAG file. The adaptation consists of substituting underscore characters with spaces and by changing all characters but the first with non capital letters. Thus the field name “CUSTOMER_NAME” will become “Customer name”.

Labels in DD classes

However, beginning with Visual DataFlex 5 you also go through the trouble of specifying long and short labels for each field in the DataDictionary objects. How do we make these available to VDFQuery?

Per file, you may tell VDFQuery which DD class to retrieve field labels from. If we have defined a DD class called Customer_DataDictionary we make it available to VDFQuery by using this syntax:

set DataDictionary_Class XE "DataDictionary_Class" Customer.file_number to U_Customer_DataDictionary

The important thing here to notice is the U_ that precedes the class name. The DataFlex compiler internally attaches this prefix to all class names.

Specifying labels without DD classes

You may specify field labels that VdfQuery will use instead of the mechanical translation of the field names specified in the DD Builder. You may do this with the REGISTER_FIELD_LABEL command:

REGISTER_FIELD_LABEL XE "REGISTER_FIELD_LABEL" dffile.field long_label [short_label]

For example:

REGISTER_FIELD_LABEL Customer.CustName "Customer name" "Name"

This will make VdfQuery use "Name" instead of "Custname". The long label will be used when printing the selection criteria.

Alternative ways to activate VDFQuery

There are three different messages that will activate VDFQuery.

send Activate_Query_Vw XE "Activate_Query_Vw" [QDF-file-name]

This will popup an empty query dialog (no file selected). Optionally you may pass the name of a query definition file (QDF file). This file will be loaded automatically.

send CreateNewQuery XE "CreateNewQuery" <file>

Pops up a query dialog with file <file> selected. <file> is an integer.

send Request_CreateNewQuery XE "Request_CreateNewQuery"

Examines the current focus to determine what data file is currently being accessed by the operator and pops up a query dialog with that file selected. If the file cannot be determined, it will popup empty.

One more way to launch a query exists. You may create a small object of the cVdfQueryLauncher class. This will let you run a report previously defined and saved in a qdf file. This example is all you get:

object oNewQuery is a cVdfQueryLauncher
 procedure run

 date inv_date#

 send DoCreateQuery // Creates a VdfQuery object

 send DoReadDefinition "invoice.qdf" // Load previously defined report

 set QueryTitle to "Invoice 123" // Set title of the report

 SysDate inv_date#

 // The next two lines set the value of the (already defined) selection

 // criteria.

 set CriteriaValue 1 to (DateIncrement(inv_date#,DS_MONTH,-1)) inv_date#

 // Obviously criteria 1 is a date range, hence the two parameters

 set CriteriaValue 2 to "DFDS" // A good and solid customer

 // Not necessary, just fair. Let the user make changes if he wants:

 send DoSelectionDialog
 send DoRunQuery // Execute the query

 send DoDestroyQuery // Destroy the object, its no longer needed

 end_procedure

end_object

procedure RunNewThing

 send Run to (oNewQuery(self))

end_procedure
A note on the VDFQuery source code

The utility is based on the VDFQuery.UTL source code (regardless of the which printer DLL you are using). This in turn uses a battery of other packages most of which have the UTL extension. The UTL (for utility) was chosen to avoid naming conflict with other people’s packages once and for all.

As time went on, I learned that I have to distinguish between packages with user interface and packages without UI. For packages that contain no user interface I now use the NUI extension (no user interface). These are packages that may be used for CM (3.2), VDF 8 or WebApp.

Some of the packages that contain user interface code do so for both CM and VDF. If you need to dig down into the source keep this in mind and make sure that you are looking at the right portions of the code (the one for your platform).

I'm afraid that the UI code is not a very good example of standard VDF programming. First of all, I have used a special set of classes (called APS for Auto Sizing and Positioning located in aps.pkg) that are suited for programming without the IDE. Secondly, I have exercised a few (not too dirty!) tricks in order to test VDF's capability to dynamically create objects (it tested out fine). But in general you will not be able to identify any of this within the VDF documentation.

VDFSort

This package integrates the re-index tool directly into your application without the need to call the DataBaseBuilder (DDB). Assuming you have followed the steps to include VDFQuery in your workspace, you may add VDFSort to you application by following these steps:

· Select "Register External Component" from the "Component" menu.

· Select "View" as the component type

· Using the Prompt Button next to "Package Name" find the file VDFSort.vw located in your VDFQuery directory.

· Enter any Description you desire (I suggest "Reindex")

· Enter Sort_vw for Object name. This name is required!

You can now add Reindex to any program just like you would any other view component. VDFSort will compile into your program and will be available from the program's View menu.

If you suspect that an error condition is present in one of your data files you may attempt to repair it using the re-index routine. If you suspect a serious error condition you should make back up copies of your data files before attempting to fix them. The re-index routine presented here does exactly the same thing as the re-index tool that is accessible via the DDB.

If you want to repair a file, the first (and hopefully only) step you need to perform is a re-index. This will rebuild all redundant information (used for optimizing finds and updates). If during the re-index operation errors are found that can not be automatically fixed you need to perform the second step which is a cleanup on the file (and a subsequent second re-index). If your data file is still malfunctioning after this second step you will need to restore a backup copy.

If you send the message Activate_Sort_Vw XE "Activate_Sort_Vw" the following list will appear (provided that you have used the VdfSort.utl in the top of your source code):

[image: image5.png]
The list includes all DataFlex data files in filelist.cfg. Data files that reside inside one of the other databases supported by the product (currently: Oracle, Pervasive, MS-SQL, DB2, MySQL, PostgreSQL or ODBC) will not appear in this list.

The Auto select button will tag all the files currently opened by the application. Entries that are not available (bad entries) will be shaded. If more entries have the same Root name only the first one will be included in the list. This prevents the user from unknowingly selecting the same file twice.

In order to be sure where the files you are about to re-index are located on your file system, press the button labeled File Locations. A list looking like this will appear:

[image: image6.png]
Clicking the Sort button of the previous dialog will re-index the selected files. If the sort routine can not obtain exclusive access to all the selected files an error is declared:

[image: image7.png]
If there is no problem opening the files in exclusive mode the dialog below will display while the re-index is in progress. You may not interrupt the sort routine and you should not attempt to perform any other tasks on your PC system while running the sort routine.

[image: image8.png]
If any errors are encountered during re-index you will have to perform a cleanup on the damaged files. I have built in a cleanup routine in VDFSort that will enable you to delete duplicate records from data files. The way the re-index routine informs you of errors (apart from the Reindex Status dialog above), is by generating ASCII files with the extension bad (i.e. faqquest.bad). If such a file is generated it indicates that error conditions that could not be automatically fixed, are present in the data file. Subsequently the bad file is used as input to the cleanup routine. Since they are ASCII files, you may also inspect the bad file manually with an editor.

The re-index routine performs three checks on your data files.

1. Internal pointers are rebuilt. This should not be the cause of any errors.

2. All the index files (*.k??) are rebuilt. This may generate errors if more records with identical sets of index values are found (two orders with the same order number). This kind of errors is referred to as duplicate records.

3. If garbage has been written to sections of the data file this will be written in the bad file. In this context garbage is data that does not obey the restrictions imposed by the record layout. This is referred to as bad data.

I shall refrain from guessing how duplicate records or bad data goes in the data file in the first place. Note that you may just have damaged index files in which case the re-index routine will fix the error condition without declaring any errors.

As far as I know, the only way to deal with bad data is to have the re-index routine overwrite them with spaces (or 0 for numeric and dates). The cleanup routine (my cleanup routine, anyway) is not capable of doing anything about it. The default setting for VDFSort however is to write such bad data to the bad file and not do anything about them. You may change this setting by clicking the properties button in the opening dialog.

As stated, VDFSort includes a cleanup routine for dealing with the “bad” files generated by the re-index routine. By clicking the button labeled Cleanup a list of bad files is presented allowing you to select, which one you want to deal with.

[image: image9.png]
This list only contains 1 bad file, namely dfds151.bad. By selecting to clean it up this dialog appears:

[image: image10.png]
This tells me that I am cleaning up a data file that currently has 9581 records in it. The BAD file found was generated on April 30th, at 5 o’clock and it’s half a megabyte in size. In real life such a size would already make you reach out for the backup tapes. I created this example by taking a data file and removing the least significant segment of all indices. This is not really a typical situation, but you may do the same in order to generate a BAD file for testing purposes.

I am also told that the BAD file contains 374 sets of duplicate records and that I am about to make a decision of which record to keep in the fourth one of those sets (which contains 11 records, meaning 10 has to go). Presumably I have already done so on the 3 previous sets. So, for each set of duplicate records I select a record in the set and press the OK button (or the F2 key).

If I really can not make up my mind which record to keep I can click the Skip set button. This means that I will have to make that decision on another occasion. If I want to skip it altogether I click on the Cancel button.

In case of the above example I would be tempted to click the Auto clean set button. This will make the cleanup routine automatically select to keep the first record of each of the remaining sets.

When we reach the end of the BAD file the dialog is automatically closed and if you have not skipped any of the sets the BAD file will be erased. If you choose to have a second go on a partially cleaned BAD file, you will only be prompted on the sets that was skipped in the previous run.

And finally, you should deal with the BAD files as soon as they are generated. In theory you may continue to work your application on data files that have not been cleaned. If you do so and then clean the data file with a BAD file that is now out of synchronization the results cannot be predicted. This is the reason I have taken care to display the time stamp of the BAD file along with its name.

Support packages

Date routines (DATES.UTL)

Although this serves as a support package for VDFQuery it will work fine with the character mode versions of DataFlex 3.1x.

The DATES.UTL package file contains a number of functions for date manipulating and a popup calendar that may be used from date fields in your application. Furthermore, a test program called TESTDATE.DF3 (for DataFlex 3.2) or TESTDATE.SRC (for VDF) is included.

All date functions described in this document work across all three date formats and regardless of handling 2 or 4 digit year dates. However, if global attribute date4_state is set (or if UseEpoch has been set to true in the registry), all date values returned will be 4 digit year dates.

The functions in this library respect the global attributes DF_DATE_FORMAT and DF_DATE_SEPARATOR, even if these changes during the running of the VDF/FLX file.

To include this library in your program put use Dates.utl in the top of your source file.

There is another switch that will allow you to not include the popup calendar. This one is called DATES_INCLUDE_POPUP and its default value is 1. Set it to 0 if you want the date routines but not the calendar.

It will be appropriate in this place to warn about standard DAC package func.pkg. This (un-documented pre-historic package) contains messages that were meant to perform some of the functions also provided by this package. Only, the functions of func.pkg will only work if date format has been set to US and a whole lot of other if’s and even then I’m not sure. I think it should be removed from the product (the package is now marked obsolete, but it’s still there).

Global functions and procedures

· function DateComposeXE "DateCompose" global integer day# integer month# integer year# returns date

Returns a date composed from the values passed regardless the current date format. If year# is two digit, the returned date will be a 2 digit year date. If global attribute date4_state is set to true, the returned value will be a 4-digit year date.

· function DateSegmentXE "DateSegment" global date date# integer segment# returns integer

Use this function to extract the day, month or year from a date. Parameter segment# may take on the following values: DS_DAY, DS_MONTH or DS_YEAR, making the function return the value of the corresponding segment of the date#.
· function DateIncrementXE "DateIncrement" global date date# integer segment# integer amount# returns date

This function will increment (or decrement if amount# is negative) the date# passed by a number of days, weeks, months or years. The value of segment# may be DS_DAY, DS_WEEK, DS_MONTH or DS_YEAR.

· function DateToIntegerXE "DateToInteger" global date date# returns integer

The date passed will be converted to an integer. June 5th 1997 will be returned as 19970605 regardless the date format in effect while June 5th 62 will be converted to 620605.

· function DateToStringXE "DateToString" global date date# integer format# integer four_digit_year# string sep# ;

returns string

Use this function to convert a date to a string regardless of the current date format. The format# parameter may be DF_DATE_EUROPEAN (dd-mm-yy), DF_DATE_USA (mm-dd-yy) or DF_DATE_MILITARY (yy-mm-dd). These are all constant integers defined by standard DataFlex). The four_digit_year# boolean parameter controls whether yy or yyyy will be part of the returned value. Finally the string parameter sep# may be “-“ or “/” or whatever (even blank) to control which character is inserted between the date segments of the returned value.

· function StringToDateXE "StringToDate" global string date# integer format# integer four_digit_year# string sep# ;

returns date

This function is the opposite of function DateToString. It may be used to convert a date in a string to a date as you tell it how to interpret the date# parameter (which is of string type).

· function FirstDayInMonthXE "FirstDayInMonth" global date date# returns date

Returns the date of the first day in the month including the passed date#.
· function LastDayInMonthXE "LastDayInMonth" global date date# returns date

Returns the date of the last day in the month including the passed date#.
· function FirstDayInYearXE "FirstDayInYear" global date date# returns date

Returns the date of the first day in the year including the passed date#.
· function LastDayInYearXE "LastDayInYear" global date date# returns date

Returns the date of the last day in the year including the passed date#.
· function DateWeekNumberXE "DateWeekNumber" global date date# returns integer

Returns the number of the week including the passed date#.
· function YearMaxWeekXE "YearMaxWeek" global integer year# returns integer
Returns the number of weeks in year year#. (52 or 53)

· function WeekToDateXE "WeekToDate" global integer year# integer week# returns date
This function returns the first date in week week# of year year#.
· function DayNameXE "DayName" global integer int# returns string

1: “Monday”, 2: “Tuesday”,...

· function DateDayNumberXE "DateDayNumber" global date date# returns integer

Returns the number of the corresponding weekday. If date# is a Monday, 1 will be returned. If date# is a Sunday, 7 will be returned.

· function DateDayNameXE "DateDayName" global date date# returns string

Returns the name of the day corresponding to date#.
· function MonthNameXE "MonthName" global integer int# returns string

1: “January”, 2: “February”,...

· function DateMonthNameXE "DateMonthName" global date date# returns string

Returns the name of the month corresponding to date#.
· function Year2to4XE "Year2to4" global integer year# returns integer

Converts an integer to 4 digit year format, if not already. EPOCH_VALUE is taken into account.

· function Date2to4XE "Date2to4" global date date# returns date

Converts a date to 4 digit year format, if not already. EPOCH_VALUE is taken into account regardless of whether date4_state is set or not

· function dSysDateXE "dSysDate" global returns date

Returns the system date with a 4-digit year.

· function sSysTimeXE "sSysTime" global returns string

Returns the system time in a string of length 8. The return value is “23:30:00” at half past 11 pm.

· Constant LargestPossibleDate XE "LargestPossibleDate"
The package defines a constant with the above name. The constant represents the highest date that may be represented in DataFlex. Its value is December 31st 2500 (Julian format).

· Constant Jan1st100 XE "Jan1st100"
· Constant Jan1st1000 XE "Jan1st1000"
· Constant Jan1st1900 XE "Jan1st1900"
· Constant Jan1st2000 XE "Jan1st2000"
These are constants defined by the Dates.utl package representing the dates indicated by their names in Julian format.

· procedure ItemDate2to4 XE "ItemDate2to4" for BaseClass integer itm#
This procedure may be used as argument to entry options iValidate, iEntry and iExit. When used it will convert any 2 digit year dates to 4-digit ditto. Use like this:

...

entry_item order.date {iValidate=msg_ItemDate2to4}

...
Note that this syntax is not recognized by the Visual DataFlex IDE. It should only be used with DataFlex 3.1 (in case your application is not based on the use of DataDictionaries).

· procedure ItemSysdate XE "ItemSysdate" for BaseClass integer itm#
This procedure may be used as argument to entry options iValidate, iEntry and iExit. When used it will insert system date into the field, if this was empty beforehand.

Note that this syntax is not recognized by the Visual DataFlex IDE. It should only be used with DataFlex 3.1 (in case your application is not based on the use of DataDictionaries).

· procedure ItemYear2to4 XE "ItemYear2to4" for BaseClass integer itm#
This one is like procedure ItemDate2to4 except that it is for use with a field containing only a year (numeric 4.0).

Note that this syntax is not recognized by the Visual DataFlex IDE. It should only be used with DataFlex 3.1 (in case your application is not based on the use of DataDictionaries).

· procedure FieldYear2to4 XE "FieldYear2to4" for DataDictionary integer field#

· procedure FieldDate2to4 XE "FieldDate2to4" for DataDictionary integer field#
· procedure FieldSysdate XE "FieldSysdate" for DataDictionary integer field#
These three procedures work like their cousins above, but they are for use from within the DataDictionary class. The procedures are only declared if DataDict.pkg (or DfAllent.pkg) has been used prior to using Dates.utl.

...

set field_validate_msg field order.date to FieldDate2to4

...
· function Module_Compile_Date XE " Module_Compile_Date " global returns date

· function Module_Compile_Time XE "Module_Compile_Time" global returns string

These functions may be used to retrieve the date and time at which the application was compiled.

The functions will fail if the application file has been renamed since it was compiled or if the compiled program is not found along dfpath. Function Module_Compile_Date must be called prior to calling Module_Compile_Time.

· function TS_SysTime XE "TS_SysTime" global returns number

· function TS_ExtractDate XE "TS_ExtractDate" global number time# returns date

· function TS_ExtractTime XE "TS_ExtractTime" global number time# returns string
The prefix TS means time seconds, and that should indicate that these functions are used for packing a date and the time of day into a single number variable. In fact, this may be thought of as a Julian second format i.e. the number of seconds since midnight January 1st of the first year of the Julian calendar. These functions are useful when creating batch processes with estimated time indications or when programming real-time monitoring functions. Two TS values may be subtracted to find the number of seconds elapsed between them.

Highest possible value is 78925622399 (11 digits) which is December 31st year 2500, one second to midnight. This value is too high to be represented in an integer variable which is why functions returning TS values are of type number rather than integer. The number format is wider.

The function TS_SysTime retrieves the current system time to a number, and TS_ExtractDate and TS_ExtractTime takes the date/time out of such a number. Function TS_ExtractTime returns a string of this format: “hh:mm:ss”.

A TS value may be composed from a time and a date using one of these two functions:

· function TS_Compose XE "TS_Compose" global date date# string time# returns number

· function TS_Compose2 XE "TS_Compose2" global date date# integer h# integer m# integer s# returns number

Function TS_Compose expects the format of the time# parameter to be “hh:mm:ss”.

The popup calendarXE "Calendar"

The popup calendar is used to assist the operator while entering into a date field. The popup calendar included in DATES.UTL is actually two popup calendars. One is for character mode DataFlex and the other for Visual DataFlex. When compiled the right one will automatically be included. In any case the name of the object will be popup_calendar.

The calendars share a common very simple interface. Three messages are understood: popup, request_popup and popup_no_export. XE "request_popup"Sending popup to it will make it appear unconditionally. Sending popup_no_export will also make it appear unconditionally, but in this case it will not attempt to export a date back to the calling object even if one is selected.

If request_popupXE "request_popup" is sent the calendar will try to figure out if it was called from a date type item and only if this is the case it will appear. This feature allows you to put only one statement into your application in order to be able to access the calendar from all date fields:

on_key key_Ctrl+key_D ;

send Request_Popup to (Popup_Calendar(self))
In Visual DataFlex the calendar is able to detect if it was called from a date type item even if this item is not associated with a database field of type date. In character mode I have found no way do so. Therefore request_popup will only make the character mode calendar popup if focus is on a field that is connected to a date type DBMS field.

Another option is to use the iPrompt entry option (or if you use DataDictionaries: you may set the field_prompt_object property). This way you may activate the calendar with F4 and you will get a small prompt button next to your field (VDF). However, you may also have a genuine selection list associated with that field, and then you will have a problem. Which function should be assigned to the prompt button (and F4)? For this reason and because it is much less work, I prefer the Ctrl+D access method. The back draw to this method is that there will be no visual indication of the presence of the calendar. But there is a solution to that. Included in the download is a bitmap called dfcalend.bmp. This may be added manually to the toolbar object of your application by editing the appropriate source files.
The following function keys may be used to navigate the calendar:

	
	Key
	Action

	
	Left/right arrows
	Previous/next day

	
	Up/down arrows
	Previous/next week

	
	PgUp/PgDn
	Previous/next month

	
	Ctrl+PgUp/Ctrl+PgDn
	Previous/next year

	
	Ctrl+D
	Go to today

The character mode version of the calendar may be moved on the screen by pressing the Ctrl key and the arrow keys.

The test program (TestDate.src & TestDate.df3)

Compiling and running TESTDATE.SRC will produce a screen like this:

Pressing Ctrl+D while the cursor is in the “Date:” field will pop up this:

[image: image2.png]
The character mode equivalent looks like this:

+-Test date routines---+

¦ ¦

¦ Test date: 05/06/1962 () US (*) European () Military ¦

¦ ¦

¦ Week number: 23 Julian value: 716776 ¦

¦ ¦

¦ Day..: 5 Weekday: 2 Tuesday ¦

¦ Month: 6 June ¦

¦ Year.: 1962 ¦

¦ ¦

¦ First date in month...: 01/06/1962 ¦

¦ Last date in month....: 30/06/1962 ¦

¦ ¦

¦ Three weeks before: 15/05/1962 Four months before: 05/02/1962 ¦

¦ Three weeks after.: 26/06/1962 Two months after..: 05/08/1962 ¦

¦ ¦

¦ Close ¦

+--+
and this:

+---------------------------------+

¦ < 1962 > < June > ¦

¦---------------------------------¦

¦Wk. ¦Mon Tue Wed Thu Fri Sat Sun ¦

¦ 22 ¦ 1 2 3 ¦

¦ 23 ¦ 4 5 6 7 8 9 10 ¦

¦ 24 ¦ 11 12 13 14 15 16 17 ¦

¦ 25 ¦ 18 19 20 21 22 23 24 ¦

¦ 26 ¦ 25 26 27 28 29 30 ¦

¦ ¦ ¦

¦ ¦

¦ OK Cancel ¦

+---------------------------------+
Well, actually it looks a lot better than this in character mode but I find it hard to illustrate that here.

The calendar works different from normal when called from within the test programs in that it updates the test image continuously when changing the current date inside the calendar.

String manipulation (STRINGS.NUI)

Converting numbers to strings

Converting numbers to strings was never very difficult in DataFlex. Simply move a number to a string, end of conversion. On occasion it is nice to be able to control the number of decimals in the string. For this and other purposes the following functions are defined:

· Function NumToStrXE "NumToStr" global number src# integer dcp# returns string
Calling this function will convert the number passed in src# to a string containing dcp# decimals rounding excess decimals. The expression (NumToStr(3.1415926,3)) evaluates to “3.142” while (NumToStr(1,2)) will be “1.00”

Parameter dcp# may be negative. The expression (NumToStr(1789,-3)) will evaluate to “2000”. The functions in this package all respect the value of global attribute DF_DECIMAL_SEPARATOR.

· Function NumToStrRXE "NumToStrR" global number src# integer dcp# integer len# returns string
This function is the same as NumToStr except that you have to specify the length of the target string (len#). The number will be right justified accordingly. Post-fix ‘R’ means "right justify".

· Function IntToStrRXE "IntToStrR" global number src# integer len# returns string
This function is the same as NumToStrR except that you do not specify the number of decimals.

· Function IntToStrRzfXE "IntToStrRzf" global number src# integer len# returns string
Is the same as IntToStrR, except that leading blanks are substituted for leading zeros (zf=zero fill).

· Function NumberOfDecsXE "NumberOfDecs" global number src# returns integer
Use this to obtain the number of the least significant non zero decimal in src#. 0.702 will return 3 while 5600 will return -2.

General purpose

· Function RightShiftXE "RightShift" global string src# integer len# returns string

Returns a string of length len# inside which src# is right justified. Note that this function has nothing to do with right justification of strings using proportional fonts or spacing.
· Function CenterStringXE "CenterString" global string src# integer len# returns string

Returns a string of length len# inside which src# is centered. See the remark on the previous function.
· Function StripFromLastOccurance XE "StripFromLastOccurance" global string src# string val# returns string

StripFromLastOccurance takes two strings (src# and val#) as arguments. src# is scanned backwards for occurrances of substring val#. If found, the function will return a string equal to src# truncated at the first character of the right most occurance of substring val#.

(StripFromLastOccurance("To be or not to be...","be")) = "To be or not to "

(StripFromLastOccurance("Mary had a little lamb","white")) = ""

(StripFromLastOccurance("Mary had a little lamb","")) = "Mary had a little lamb"

· Function GetFromLastOccurance XE "GetFromLastOccurance" global string src# string val# returns string

This is the opposite of StripFromLastOccurance. It retrieves everything from the last occurrence of sub-string val#.

(GetFromLastOccurance("To be or not to be...","be")) = "be…"

(GetFromLastOccurance("Mary had a little lamb","white")) = " Mary had a little lamb "

(GetFromLastOccurance("Mary had a little lamb","")) = ""

· Function ExtractWord XE "ExtractWord" global string src# string dlm# integer itm# returns string

This function is meant for extracting sub-strings from a source string. The first parameter src# is the string from which we want to extract a sub-string. The second parameter dlm# must contain all characters that we consider to be item separators. The last parameter itm# is the number of the item that we want to extract.

If you wanted to extract the fourth word from the string "Mary had a little lamb” you could use this function:

(ExtractWord(“Mary had a little lamb”,” “,4)) = “little”

The value of the second parameter signifies that we only consider the space character to be a word separator. This splits the source string into the following words: “Mary”, “had”, “a”, “little” and “lamb”.

But we could (rather arbitrarily) also choose to make the small letter a word separator as well as the space character. Passing “ a” as the second parameter does this. Now space and a are considered to be word separators. This splits the string into these words: “M”, “ry”, “h”, “d”, “little”, “l” and “mb”.

The first word is number 1. You can determine the number of words in a string by using the function:
· Function HowManyWords XE "HowManyWords" global string src# string dlm# returns integer

This function returns the number of words in a string src# when the characters in parameter dlm# are considered to be word separators.

(HowManyWords(“Mary had a little lamb”,” “)) = 5

(HowManyWords(“Mary had a little lamb”,” a“)) = 7

· Function ExtractWordNeg XE "ExtractWordNeg" global string src# string lch# integer itm# returns string

This works the same as function ExtractWord except that the second parameter (lch#) specifies legal characters to make up a word. All other characters than the ones passed in the lch# parameter are considered word separators.

· Function ExtractInteger XE "ExtractInteger" global string str# integer itm# returns integer

· Function HowManyIntegers XE "HowManyIntegers" global string str# returns integer

· Function IsIntegerPresent XE "IsIntegerPresent" global string str# integer int# returns integer

· Function AddIntegerToString XE "AddIntegerToString" global string str# integer int# returns integer
These functions are used when a set of integers contained in strings should be manipulated. A string may contain a number of integers separated by spaces (or whatever). This code illustrates:

Procedure Test

 integer max# count#

 string str#

 Move ”” to str#

 Move (AddIntegerToString(str#,7)) to str#

 Move (AddIntegerToString(str#,9)) to str#

 Move (AddIntegerToString(str#,13)) to str#

 Move (HowManyIntegers(str#)) to max#

 For count# from 1 to max#

 Showln (ExtractInteger(str#,count#))

 Loop

 If (IsIntegerPresent(str#,29)) showln “29 is part of the set”

 Else showln “Unfortunately 29 is not part of the set”

End_Procedure
· Function StringConsistsOf XE "StringConsistsOf" global string src# string tpl# returns integer

Use this function to find out if a string consists exclusively of characters from a specified set. To find out if a string is a legal integer you may test with this expression:

if (StringConsistsOf(TestVar,”0123456789”)) begin

· Function RemoveDblBlanks XE "RemoveDblBlanks" global string str# returns string

Remove all occurrences of double blanks from a string.

· Function Text_RemoveTrailingCr XE "Text_RemoveTrailingCr" global string str# returns string

Remove all trailing CR and LF characters from a string.

· Function Text_RTrim XE "Text_RTrim" global string str# returns string

Right trims the text and removes trailing CR/LF. Also substitutes non breaking spaces (255) with normal spaces (32).

· Function Text_Trim XE "Text_Trim" global string str# returns string

Trims the text and removes trailing CR/LF. Also substitutes non breaking spaces (255) with normal spaces (32).

· Function Text_Format.sii XE "Text_Format.sii" global string str# integer wdth# integer rst# returns integer

· Function Text_FormattedLine.i XE "Text_FormattedLine.i" global integer line# returns string
These two are used for simple formatting of text when the text is to be presented in a monospaced font or written to an ASCII file. It assumes that all characters are equally wide. The functions use an object in the background to do the job. The idea is that you add text to this object with the Text_Format.sii function and then retrieves it again (line by line) with the Text_FormattedLine.i function.

The Text_Format.sii function takes three parameters. The first one is the text to be added. It may be a text field from a database (read about the set_argument_size command in DF documentation). The second parameter specifies the width of format in characters and the last parameter should be 1 if you want to delete all text previously present in the formatter object. Passing a 0 as the last parameter will add the string to the text already in the object. The return value is equal to the number of lines in the formatter object after the text has been added.

The purpose of the cText_Formatter class, which is also present in the strings.utl file, is to support the Text_Format.sii and Text_FormattedLine.i functions. If you use VdfQuery to output to file (printable format) and your report contains text fields, you can see what it does. The class is capable of formatting a text to fit inside a column x characters wide. If a single word is wider than the column width it will divide the word (not intelligently) and insert a "-" character. Note however, that all formatting is based on the assumption that all characters are equally wide. It only works with monospaced fonts (or when writing to ASCII files).

Programming using Array objects

Programmers new to DataFlex have to get on top of a lot of techniques before getting the feeling of actually mastering the language. Because of this, and because VDFQuery (and DFMatrix) is heavily based on the use of arrays, I have included this chapter. The contents applies equally well to VDF and the character mode versions of DataFlex (3.2)

In DataFlex arrays are objects. An array is declared like this:

object oArr is an array

end_object
An array is able to store a number of data items such that each data item is associated with a unique number within the array. This means that we can set the seventh data item to 88 and later on retrieve the value of the seventh item and expect to find the value 88.

The unique number identifying each data item is called the index of the array. In DataFlex arrays are always indexed from 0 to +(. You can not create data items with negative index values. And you do not have to define the size of the array. Arrays are expanded dynamically as needed.

Storing and retrieving values

The first item in an array is item number zero (we say that the indexing of the array is zero based). This means that the seventh item is actually item 6 (since the first is item 0). The values of the data items in the array are its properties. To assign a value to a data item in an array, the syntax is therefore:

set value [of array_id] item itm to value
If you set a value from within the array itself, the ‘of array_id’ should be omitted. Correspondingly, you may retrieve the value of a data item using this syntax:

get value [of array_id] item itm to variable
number nVar

set value of (oArr(self)) item 6 to 88

get value of (oArr(self)) item 6 to nVar

showln nVar
or the equivalent:

set value of (oArr(self)) item 6 to 88

showln (value(oArr(self),6))
The latter version shows how to retrieve the value of a data item in an expression (the argument to the showln command). In that case you refer to the value property as if it was a function (called value). And functions that are not global must always be passed the object ID inside which it is located as the first parameter.

A quick comment

Why do I refer to the array object as (oArr(self)) instead of simply oArr? The first form is called an expressional reference since it is the usual runtime expression evaluator that resolves it.

Beginning with VDF 6 you are allowed to leave out the expressional part of object references if the object is not "too far away". This is also the case in DF 3.2 if used in its DD mode (setpath_dd.bat), and only then.

Using 3.2 in its non-DD mode or any other 3.x your code will work only if the array object is instantiated at desktop level. Whenever the compiler meets an object on the desktop it tries to do you a favor by creating a symbol (objectname.obj but never mind) that in effect allows you to make a non-expressional reference to it. However, this is a bad favor since your syntax will now depend on whether you are referencing a desktop object or an embedded object. Luckily the expressional referencing always works. Therefore that is the one I use in the sample code (and all other code by the way).

Resetting an array

The way to reset an array and release all the memory previously occupied by its data items is sending the message delete_data to the array in question:

send delete_data to (oArr(self))

Note! You should never augment procedure delete_data. The reason is that delete_data is called by the runtime as part of the object destruction (i.e. when the program terminates). If you try to manipulate properties or other objects as part of the delete_data procedure, you quite simply risk that these properties and/or objects do not exist anymore because they have already been destroyed. The result will be Invalid message or Unresolved object reference errors when the user exits the application.

Instead you should create a message called reset or initialize or whatever (I prefer reset) and send delete_data from in there together with the other stuff you want to do.

Example.

You may have nested arrays like this:

object oOuterArr is an array

 object oInnerArray is an array

 end_object
end_object
You might be tempted to augment procedure delete_data in the outer array

object oOuterArr is an array

 object oInnerArray is an array

 end_object
 procedure delete_data

 send delete_data to (oInnerArray(self))

 forward send delete_data

 end_procedure
end_object
When the application is terminated the objects are destroyed inside-out so to speak, meaning that the oInnerArray object is destroyed before oOuterArray object. Since the delete_data procedure is called as part of destroying an object the augmented delete_data procedure of the oOuterArray will generate an error when destroyed. The inner array does not exist anymore and yet the procedure attempts to send a message to it.

You should create a new procedure that deletes the items of both arrays:

object oOuterArr is an array

 object oInnerArray is an array

 end_object
 procedure reset

 send delete_data to (oInnerArray(self))

 send delete_data

 end_procedure
end_object
This way you may use the reset message to reset the data structure and not interfere with the way objects are destroyed.

Counting the items

In the array class there is a function that returns the number of items in an array. It is called item_count and is used like this:

get item_count [of array_id] to variable
In fact, the function does not return the number of data items you have inserted into the array but rather the number of the highest index currently used plus one. So if we perform the following action on an empty array:

set value of (oArr(self)) item 0 to 2

the item_count function would return 1 (0 is the highest index used), and if we did this:

set value of (oArr(self)) item 6 to 88

the item_count function would return 7. It is not possible to distinguish between empty items and items whose value have been set to 0.

Typically a procedure that goes through all the items in an array would look like this:

procedure dump_array

 local integer liItm liMax

 local string lsValue

 get item_count to liMax

 for liItm from 0 to (liMax-1)

 get value item liItm to lsValue

 showln lsValue

 loop
end_procedure
You may also think of the item_count function as pointing to the next available (not used) data item. If you want to append an item to the existing ones, you could write:

procedure append_item string value#

 local integer new_item#

 get item_count of (oArr(self)) to new_item#

 set value of (oArr(self)) item new_item# to value#

end_procedure
or as a one-liner:

procedure append_item string value#

 set value of (oArr(self)) item (item_count(oArr(self))) to value#

end_procedure
Sorting the items

The array class has a pretty exotic but often very useful feature. It is capable of sorting its items in ascending or descending order.

send sort_items to (oArr(self)) ASCENDING

If the data items are of the type string this will order the data items in lexicographic order (like an encyclopedia). This is unfortunately also the case if you store numeric data in an array. These integers 1, 2, 5, 10, 33 would be sorted like this: 1, 10, 2, 33, 5. Make sure you understand this. If you want the correct numeric sequence you have to convert to values to right justified strings before inserting them into the array (you could use the RightShift or Num2Str functions of strings.utl to do that).

Note! Beginning with VDF 7 (and DF 3.2 I’m sure) arrays are actually able to sort numeric values correctly. Only I have never made use of this feature and will for reasons of stubbornness continue to sort arrays the “ASCII way”.

You may change the direction of the ordering by substituting parameter ASCENDING for DESCENDING. If the direction parameter is omitted ASCENDING is assumed.

I use the sorting ability of the array class specially when I have to present records of a data file in an order that is not reflected by an index. Here is the data file definition of the wines.dat file of the Wines example:

FILE DEFINITION FOR FILE: WINES (# 14)

NUM FIELD NAME TYPE SIZE OFFST IX RELATES TO FILE.FIELD

--- --------------- ---- ----- ----- -- ---------------------------------

 1 TYPE ASC 2 1 1 TYPES.FIELD_1 (10,1)

 2 SIZE ASC 2 3 SIZES.FIELD_1 (11,1)

 3 ORIGIN ASC 3 5 LOCATIONS.FIELD_1 (12,1)

 4 YEAR NUM 2.0 8 1

 5 VINTNER ASC 30 9 1

 6 COST NUM 4.2 39

 7 PURCHASE_PLACE ASC 25 42

 8 PURCHASE_DATE DAT 3 67

 9 OPEN_DATE DAT 3 70

 10 TASTING_NOTES TEX 2048 73

 11 SHORT_NAME ASC 48 2121

 12 RESERVE ASC 1 2169

 13 COMMENTS TEX 1024 2170

 14 SUGAR_CONTENT NUM 2.2 3194

 15 ALCOHOL_CONTENT NUM 2.2 3196

 16 WHO_DRANK ASC 50 3198

 17 BIN ASC 10 3248 3

 18 WINE_SPEC_RATE NUM 2.0 3258

 19 QUANTITY NUM 4.0 3259

INDEX# FIELDS DES U/C LENGTH LEVELS SEGMENTS MODE

------ --------------- --- --- ------ ------ -------- -------

 1 TYPE NO NO 36 3 4 ON-LINE

 YEAR NO NO

 VINTNER NO NO

 RECNUM NO NO

 2 VINTNER NO NO 34 3 3 ON-LINE

 YEAR NO NO

 RECNUM NO NO

 3 BIN NO NO 13 2 2 ON-LINE

 RECNUM NO NO
Let us say that I want to list these records ordered by the who_drank field. This field does not appear as the most significant segment of any index (or indeed at all). This is how I’d do it:

Open Wines

object oMyOrdering is an array

 procedure add_record

 integer item#

 get item_count to item# // Points to next available item

 set value item item# to (pad(Wines.Who_Drank,50)+pad(string(Wines.recnum),10))

 end_procedure
 procedure fill_array

 integer found#

 send delete_data

 clear Wines

 repeat // Go through all records of the Wines table

 find gt Wines by recnum // Ordering at this point doesn’t matter. We use recnum for speed!

 move (found) to found# // Never rely on a global variable. Make a local copy!

 if found# send add_record

 until (not(found#))

 end_procedure
 procedure list_records

 integer itm# max#

 string str#

 get item_count to max#

 for itm# from 0 to (max#-1) // Go though the items of the array

 clear Wines

 get value item itm# to str#

 move (integer(right(str#,10))) to Wines.Recnum

 find eq Wines by recnum

 show Wines.Who_Drank “ “ Wines.Short_Name

 loop
 end_procedure
end_object
send fill_array to (oMyOrdering(self))

send sort_items to (oMyOrdering(self))

send list_records to (oMyOrdering(self))
Using the Array for class building

If you are building advanced applications you may have complex array based calculations that must be used throughout your application. In that case you would want to build a new class based on the array class and add your own properties and methods. I seem to be doing that a lot and therefore I have the following comments.

Imagine that you send a message to an object that the object does not understand (that is: the object itself does not have a method with that name and neither do any of the super classes of that object). It is then standard DataFlex behavior that the message is automatically sent to the encapsulating object. If this object or any of its superclasses does not understand it either the process repeats itself. This is called message delegation and the way the data entry objects in particular works, relies heavily on this fact.

In fact, when you are programming DataFlex you get so used to this fact that you tend to think of it as a law of nature. You are therefore major ‘gotcha’ prone, if you are not aware of the following: The Array and Set classes are the only classes in the DataFlex class hierarchy that does not display this behavior! You keep sending messages or calling functions from within your class expecting them to be caught by some encapsulating object out there and nothing happen. Why? Because the array class has its delegation_mode property set to NO_DELEGATE_OR_ERROR. This means that if you send a message to an object based on the array (or set) class that it does not understand, it will not delegate the message and it will not inform you about this by issuing an error message. All other classes have their delegation_mode set to DELEGATE_TO_PARENT.

Therefore I always make sure to do the following when I subclass the array class:

class My_Array_Class is an array

 procedure construct_object

 forward send construct_object

 set delegation_mode to DELEGATE_TO_PARENT // Normal delegation mode

 end_procedure

end_class
Then things will work as I expect them to. In fact I have created a subclass of the array class called cArray (located in set.utl) and the only augmentation compared to the array class is that the delegation_mode of the cArray class is set to DELEGATE_TO_PARENT.

Advanced use (1.5 dimensional arrays)

Sometimes you may need to register more than one value per item in an array. Per item you would like to store a known number of values. If you do not know the number of values per item you will need a true 2 dimensional array. Now it will suffice with what I would call a 1.5 dimensional array.

Imagine that you want to store the fields that you want to output in a report in an array. For each column you would like to store the column header, the justification mode and the width of the column. You will probably end up with code looking something like this:

object oColumnInfo is an array

 procedure set column_header integer iColumn string sLabel

 set value item (iColumn*3) to sLabel

 end_procedure

 function column_header integer iColumn returns string

 function_return (value(self,iColumn*3)

 end_function

 procedure set column_justification integer iColumn integer iJust

 set value item (iColumn*3+1) to iJust

 end_procedure

 function column_justification integer iColumn returns integer

 function_return (value(self,iColumn*3+1)

 end_function

 procedure set column_width integer iColumn number nWidth

 set value item (iColumn*3+2) to nWidth

 end_procedure

 function column_width integer iColumn returns number

 function_return (value(self,iColumn*3+2)

 end_function

end_object
This will allow you to use syntax like this (from within the object):

set column_header item 0 to “Date”

set column_justification item 0 to JMODE_LEFT // JMODE_LEFT is an integer constant

set column_width item 0 to 10

set column_header item 1 to “Name”

set column_justification item 1 to JMODE_LEFT

set column_width item 1 to 25

set column_header item 2 to “Amount due”

set column_justification item 2 to JMODE_RIGHT // And so is JMODE_RIGHT

set column_width to 10
Adding a row_count function to the oColumnInfo object:

function row_count returns integer

 integer iRval

 get item_count to iRval

 function_return (iRval+2/3)

end_function
you may write code like this:

procedure display_row

 integer iRow iMax

 get row_count to iMax

 for iRow from 0 to (iMax-1)

 // Do something per item (row) here

 loop

end_procedure
The Item_Property command

I have invented an easier syntax for this. One of the support package files for VDFQuery is called ItemProp.nui. This package defines a command structure that will allow you to define item based properties within an array object exactly as described in the previous paragraph. Only, this is a whole lot easier. The oColumnInfo example implemented using the ItemProp.nui package would look like this:

Use ItemProp.nui // item_property command

object oColumnInfo is an array

 item_property_list

 item_property string column_header

 item_property integer column_justification

 item_property number column_width

 end_item_property_list

end_object
The item_property structure actually expands to code 100% identical to that of the example of the previous paragraph (including the row_count function). But this version is much more readable and it is much easier to add an extra column.

object oTest is an array

 item_property_list

 item_property integer piWhatEver

 item_property string psAlsoWhatever

 end_item_property_list

end_object
Hereafter you may write code such as:

set piWhatever 2 to 37

set psAlsoWhatever 2 to "All work and no play"
Note that the object is a simple un-augmented array. The above constructions makes it understand SET’ting and GET’ting properties piWhatEver and psAlsoWhatever as if they where item based. Furthermore the object now has a function called Row_Count, that returns the number of rows currently in the array.

If you need to use the item_properties in a class you need to repeat the class name after the End_Item_Property_List (don't ask!):

class cTest is an array

 item_property_list

 item_property date pWhatEver

 item_property real pAlsoWhatever

 item_property number pAmount

 end_item_property_list cTest // Repeat class name here!

end_class
Note that you cannot subclass an item_property class and add more item_properties (unless you redefine the whole list of item properties including the ones from the class).

Another point (which is important to me) is that the code generated by the item_property command is 101 percent optimized. You could not get better performance by “handcoding” it (as in the previous section).

The one ability of the Array class that you seem to lose is the ability to sort the items. If you send sort_items to a 1.5 dimensional array you will have the columns mixed up since the sort_items message is not aware of the row-structure you have imposed on the items.

AHA! But there’s a cure for that. The ItemProp.nui package includes a number of global messages that may be used to sort a 1.5 dimensional array like this:

send ITMP_Sort_DoReset // Reset this clever mechanism

send ITMP_Sort_DoAddSegment 2 // Sort primarily by data in the third column

send ITMP_Sort_DoAddSegment 1 // Sort secondarily by data in the second column

// Only now the mechnism is told which array to sort:

send ITMP_Sort_DoSortData (oColumnInfo(self))

You could obtain exactly the same effect by this one line of code:

Send sort_rows to (oColumnInfo(self)) 2 1

So, why on earth would you ever want to use former form? I don’t know really, other than this: Using the first form you may add an extra boolean parameter (DFTRUE) to the ITMP_Sort_DoAddSegment message. This may be used in (the rare) case that you would like to have the sorting based on uppercased values of the contents of that column (assuming the column is a string column). Other than that there is no reason not to use the sort_rows message.

2-dimentional arrays

Two dimensional arrays can be modeled in two ways. If you know the maximum index used in one of the directions you can use a single array to get two dimensional behavior. This really is just the general case of the 1.5 dimentional array described in the previous paragraph.

Known index maximum

The simplest approach:

object oArray2dim is an array

 property integer piMaxColumn public 0

 procedure set sValue2dim integer iColumn integer iRow string sValue

 integer iItem

 move (iRow*piMaxColumn(self)+iColumn) to iItem

 set value item iItem to sValue

 end_procedure

 function sValue2dim integer iColumn integer iRow returns string

 integer iItem iMaxColumn

 get piMaxColumn to iMaxColumn

 move (iRow*iMaxColumn+iColumn) to iItem

 function_return (value(self,iItem))

 end_function

end_object
In this example both dimensions are zero based.

If we would rather have a reusable class than having make the above augmentation each time we needed a 2 dimensional array, we would code it like this:

class cArray2dim is an array

 procedure construct_object integer iImage

 forward send construct_object iImage

 set delegation_mode to DELEGATE_TO_PARENT // Remember? I always do this!

 property integer piMaxColumn public 0

 end_procedure

 procedure set sValue2dim integer iColumn integer iRow string sValue

 integer iItem

 move (iRow*piMaxColumn(self)+iColumn) to iItem

 set value item iItem to sValue

 end_procedure

 function sValue2dim integer iColumn integer iRow returns string

 integer iItem iMaxColumn

 get piMaxColumn to iMaxColumn

 move (iRow*iMaxColumn+iColumn) to iItem

 function_return (value(self,iItem))

 end_function

end_object

object oArray2dim is a cArray2dim

end_object
The two code fragments above yields exactly the same result, only in the latter case we have a class that may be reused. Now, currently nothing prevents us from addressing our two dimensional array with an illegal column index value. If we have set the maximum column index (the piMaxColumn property) to 15 (signifying that legal column index values would be 0 to 14) we would want an error message if we tried to access it with out of bounds values.

Another error condition may arise if we change the value of the piMaxColumn property while data is in the array. This would change the meaning of the data already entered into the array.

In order to catch these potential errors we alter the class definition into this:

class cArray2dim is an array

 procedure construct_object integer iImage

 forward send construct_object iImage

 set delegation_mode to DELEGATE_TO_PARENT

 property integer private.piMaxColumn public 0

 // The private prefix indicates that we consider it a private property

 end_procedure

 function piMaxCoumn returns integer

 function_return (private.MaxColumn(self))

 end_function

 procedure set piMaxColumn integer iMax

 integer iItemCount

 get item_count to iItemCount

 if (iItemCount<>0) error 666 “Can’t set column index range while not empty”

 else set private.piMaxCount to iMax

 end_procedure

 procedure set sValue2dim integer iColumn integer iRow string sValue

 integer iItem

 move (iRow*piMaxColumn(self)+iColumn) to iItem

 if iColumn ge iMaxColumn error 666 “Column index is out of range”

 else set value item iItem to sValue

 end_procedure

 function sValue2dim integer iColumn integer iRow returns string

 integer iItem iMaxColumn

 get piMaxColumn to iMaxColumn

 move (iRow*iMaxColumn+iColumn) to iItem

 if iColumn ge iMaxColumn error 666 “Column index is out of range”

 else function_return (value(self,iItem))

 end_function

end_object
Unknown index maximum

Well, for now you’ll just have to figure it out yourself. However, you may do so by looking in the set.utl package that defines both 2 and 3 dimensional classes that may be used when you have no previous knowledge of the ranges of the indices. These classes are called cArray2d and cArray3d and they achieve their goal by using dynamic creation and destruction of objects.

Appendices

Appendix A: What’s new

VdfQuery

New in version 2.2b (August 2004)

· Italian string constants added

· Missing openbook.bmp added

· vWin32fh.pkg by Wil van Antwerpen (www.vdf-guidance.com) has been updated.

· cXmlBuilder class added (xmlbuilder.nui). Documentation in package.

· Fix for error in save mechanism for VDFQuery definitions (thanks to Archie Campbell)

· HTML output no longer doubles OEM -> ANSI conversion

· XML RootNode naming extra protected (once again)

· Function VpeWriteRTF gave a compile error with some versions of VPE. No more.

New in version 2.2 (June 2004)

· WinPrint2 is used (therefore this is VDF10 only)

· Bug in XML output from VDFQuery fixed

· Fastview now has dynamic menues with view and queries

· Classes for implementing free text search (FTS) included

· Dfm has a new item called "Explore folder sizes"

· VPE version now in agreement with Windows Terminal Server

· A number of errors fixed

New in version 2.1 (Jan 2004)

· Top text did not appear when output was sent to HTML. This has been fixed

· The OEM to ANSI conversion is now enabled when outputting to HTML regardless of the checkbox setting.

· Rename VT_* in VMachine.utl and DFScript.utl to avoid name clashing with CDO's.

· Added support for definition and output folders. These are now specific to the Windows user.

· Fixed error in procedure set CriteriaValue

· Fixed error when setting output order to descending ad-hoc (only affects 9.1)

· New feature in DFM (Win version): "Dump/Load data".

· It is now possible to open a set of table definitions by pointing to a filelist.cfg.(DFMatrix)

· New feature Fastview: "Document your database". Lets you enter textual description of each table and each field in your database.

· FastView home folder is now specific to each windows user.

New in version 2.0 (Oct 2002)

· Field selector tracks when fields already selected are focused

· Table definition will be displayed if table selector is right clicked

· All fields in an index may be selected for printing by right clicking field selector

· Fastview bug fixed (file not open)

· VDFQuery bugs fixed:

· Break info did not appear to be saved with the definitions

· Eval function failed on string segments longer than 255

· Spanish language section updated

· User may specify calculated columns in reports

· Selection criteria based on an expression

· The ability to order the output based on any combination of field values (including parent fields)

· VDFQuery and VDFSort dialogs may now be re-sized the anchoring way

· Character mode Query removed from the download (sorry)

· Source code for FastView 2.0 for VDF 8.x added

New in version 1.7b (March 2002)

· Fixed VPE preview

· Now compiles with StarZen's VPE packages (Peter van Mil)

· "Number too large..." error in VDFGraph fixed

· Find file feature of DFMatrix fixed (when scanning PR? files)

New in version 1.7 (December 2001)
· The VDF components now compiles with VDF 7 and VDF 8

· Character mode query for DataFlex 3.2 (DbQuery.df3)

· Default language changed from Danish to English

· Changed superclass of GraphicArea class to comply with VDF 8.1

· Fixed error in FileList.utl to allow for FileList entries above 255

· Disabled timer in Graphichs demo program (gr.src) causing 'Can't kill windows timer' on exit (error 1400)

· Disabled VPE interface of Graphichs demo program (gr.src)

· Replaced garbled dfcalend.bmp

· Swedish language section updated

· Bug fixes

New in version 1.6 (August 2001)
· XML capability added

· No longer clears the buffer following a query on a system file

· Fixed broken exclusion of tables with "@" in display name.

· Text field blank criteria added

· Fixed bug when specifying selection criteria on calculated fields.

· French language included

· Now works with high filelist numbers (up to 4095)

· DFMatrix source included (and documented in a separate Word document)

· Jump-out error fixed.

· Source code conflict with FlexCom resolved

· Main panel is now resizable

New in version 1.5 (November 2000)
· New table selector

· Field exclusion feature fixed

· Prompt list on relating fields (when entering selection criteria)

· Message available to set icon (set VDFQuery_Icon to “xxx”)

· Optional choice of ANSI character set when printing to file

· Optional inclusion of column names when printing to file

· Optional texts to print as part of report header and report total

· Optional use of semicolon (instead of comma) when printing to comma separated files

· More advanced possibilities to call previously saved report definitions

· Now supports VPE 3.1

· Language selector mechanism changed to comply with VDF7

· Programmer specified virtual indices may now be added to the index selector

· A number of errors fixed.

New in version 1.3b (June 1999)

· The global WinPrint object is now reset after printing a VDFQuery report

· All supported languages updated

· Jump-out error on numeric index segments fixed

· Jump-in error involving descending index segments fixed

· Clean-up code added to VdfSort (to avoid calling the DDB)

· VDFSort will now compile if used inside the client area

· DD field labels may now be displayed in field selector list (by right clicking on the list)

· Files may now be hidden from the user via the VdfQuery_ExcludeFile property

· VDFGraph packages included (and documented in a separate Word document)

New in version 1.3 (April 1999)

· Field names that begins with a '@' character are now excluded.

· Portuguese string constants have been added.

· Now possible to hide fields from the user.

· All selection criteria for a report may be specified in one panel.

· Multi level report breaking added.

· Now possible to use field labels as specified in DD classes.

· Programmer specified functions may appear as printable and selectable fields.

· WinPrint reports now looks more appealing (I think).

New in version 1.2b (October 1998)

· Argument size adjustment now also in effect when the WinPrint interface is used.

· Dutch added.

· Shadow error on 'orientation' check box fixed.

· HTML capability added.

New in version 1.1 (July 1998)

· Supports new 'MaxLength' feature in WinPrint 1.16 (in fact, it now ONLY works with WinPrint 1.16 and above).

· Swedish and German have been added.

· It is now possible to print the reports in landscape. VDFQUERY 1.1 will read the VDQ files of VDFQUERY 1.0 but not the other way around.

Appendix B: Virtual Print Engine (VPE)

The described procedure will compile a WinPrint interface into your program. An alternative to the WinPrint interface is also built in. A German company called Ideal Software makes a print engine called 'Virtual Print Engine XE "Virtual Print Engine (VPE)" ' or VPE for short. This engine may be used from any programming language that supports calling external DLL's.

VPE is faster and more precise than WinPrint. Unfortunately it is rather expensive (550$ per developers seat, distribution is free (same principle as VDF)). If you are using VPE you should use VPEQUERY.UTL instead of VDFQUERY.UTL (this is in the VDFQuery.rv file).

Even if you are not currently using VPE, you may still try it out by getting a fully functional DEMO version from the web site of Ideal Software:

 Go to www.IdealSoftware.com

 Download the 32 bit trial version of VPE

 Put VPE32.DLL in the WINDOWS directory

Note! The above was written while the current version of VPE was 2.2. Ideal Software has since released VPE version 3.0 that has a different pricing strategy. VdfQuery 1.6 requires version 3.0 to run.

VPE in general

What is VPE? It is a DLL that basically performs the same task as WinPrint. However, in a slightly different way.

Differences:

· VPE measures everything in 1/10’s of a mm as opposed to WinPrint that uses centimeters or inches.

· VPE does not store headers and footers inside its DLL like WinPrint do. That means that you may not generate your report and then afterwards select the paper size. To my opinion that is a pretty exotic feature anyway.

· VPE is page oriented (WinPrint is line oriented). You may print at the top of the page, then print a little at the bottom of a page and then go back and print again on the top of the page. You can even go back and print some more on previous pages. This in fact makes it very easy do a “page x of y” pagination.

· Every time you have printed something (text, images, bar codes or graphics) you may query the size and position of what you have just printed.

· VPE will only work with TrueType fonts.

To do a report with VPE you must first open a document. You do that by calling a function that will return a handle for the document. This handle will be the first parameter by all subsequent calls to VPE. By the way, this implies that it is possible to generate more reports at the time, if anybody has the need for that. You may also have more previews open at a time. While a preview is displaying you can go back to your application and run another report that generates a second preview. It should even be possible to have the preview appear as a part of a view (called embedded preview) but this means that you have to intercept a Windows message called MoveWindow(?) and I haven’t tried to figure that out.

Now, to interface VPE I have a file called VPE.PKG. This file contains all the external function declarations to interface VPE32.DLL. This DLL is capable of printing text, images and graphic elements. VPE consists of more DLL’s that enhances the functionality, but I have forgotten in what areas (except bar codes) and I have never used or interfaced them. Anyway, these are the functions that all requires the document handle as the first parameter.

OK, I do not want to carry that document handle around in all my reports so I have created another file called VPEBASE.PKG. This one simply defines a class that repeats all the previously defined external functions (with a slightly different name to avoid compiler errors) but without the handle and mostly without the return value. The handle is obtained when a document is opened, stored in a property and inserted automatically into all subsequent calls to the object.

In the bottom of that file I have the following four lines:

integer oVPE#

object oVPE is a cVPE

 move self to oVPE#

end_object
This means that from now on I will be communicating with VPE through an integer. It also means that the documentation that comes with VPE remains perfectly valid.

A simple report would now look like this:

send vpe.OpenDoc to oVPE#

send vpe.SelectFont to oVPE# “Arial” 12 // Arial 12 pt.

send vpe.Write to oVPE# 100 200 300 260 “Hi folks”

send vpe.PrintDoc to oVPE#

// or: send vpe.PreviewDoc to oVPE#
This is the level of programming assumed by the VPE documentation (which you have downloaded). If you have not yet printed the demo, do it (press the button called “Capabilities + Precision”). It prints a document containing all the information necessary to grasp the mechanics of the DLL. In addition to that you have the on-line help that describes every function in detail.

I have seen a discussion on the forum concerning printing text fields. In VPE you specify a rectangle inside which the text must print. The text automatically wraps as needed within that rectangle. You may tell it to right align, left align, right and left align or center. If the text is longer than will fit inside the specified rectangle the text is truncated. If the parameter specifying the bottom of the rectangle is set to VFREE (a negative integer constant) the text will automatically wrap onto the next page.

At this point you have to know that VPE operates with a concept called the “default output rectangle” (be aware, at this point we are now speaking of two different rectangles). The purpose of this is to determine the values signified by the VFREE constant. The VFREE constant may be used to substitute any coordinate, you see.

The default rectangle is also used to determine where the part of the text that was wrapped to a new page is printed. If VFREE was specified as the bottom of the text output rectangle (as opposed to the default output rectangle) the text printed on the new page will still respect the left and right margins of the text output rectangle but it will begin at the top of the default output rectangle.

All automatic page wrapping may be turned off if desired.

Appendix C: Language dependant constants

There is a lot of language dependent constants in some of the package files. These have been extracted into language sections in the beginning of the relevant files (easy to identify). Currently there are sections for the following languages:

Dutch, Spanish, English, Danish, Swedish, Norwegian, Portuguese, French and German

Also, I shall happily add more language sections if anyone is prepared to do the actual translating. Hungarian, Italian, anyone? Volunteers should contact me (sture.aps@mail.tele.dk) before taking on the task (don't fall over each other now).

Please, do not assume that someone else is taking care of your language. It will only mean that your language will not be part of future revisions of VDFQUERY.

By the way, if you look into the LANGUAGE.PKG file you can see how easy it is to change the language once it's there.

A
Activate_Query_Vw, 11

Activate_Sort_Vw, 13

AddIntegerToString, 24

C
Calendar, 20

CenterString, 23

CreateNewQuery, 11

cVirtualFields, 8

D
DataDictionary_Class, 11

Date2to4, 18

DateCompose, 17

DateDayName, 18

DateDayNumber, 18

DateIncrement, 17

DateMonthName, 18

DateSegment, 17

DateToInteger, 17

DateToString, 17

DateWeekNumber, 18

DayName, 18

define_field, 9

dSysDate, 18

E
ExtractInteger, 24

ExtractWord, 24

ExtractWordNeg, 24

F
FieldDate2to4, 19

FieldInf_VirtualFields_Object, 9

FieldSysdate, 19

FieldYear2to4, 19

FirstDayInMonth, 18

FirstDayInYear, 18

G
GetFromLastOccurance, 23

H
HowManyIntegers, 24

HowManyWords, 24

I
IntToStrR, 23

IntToStrRzf, 23

IsIntegerPresent, 24

ItemDate2to4, 19

ItemSysdate, 19

ItemYear2to4, 19

J
Jan1st100, 19

Jan1st1000, 19

Jan1st1900, 19

Jan1st2000, 19

L
LargestPossibleDate, 18

LastDayInMonth, 18

LastDayInYear, 18

M
Module_Compile_Date, 19

Module_Compile_Time, 19

MonthName, 18

N
NumberOfDecs, 23

NumToStr, 23

NumToStrR, 23

R
REGISTER_FIELD_LABEL, 11

RemoveDblBlanks, 25

Request_CreateNewQuery, 12

request_popup, 20

RightShift, 23

S
sSysTime, 18

StringConsistsOf, 24

StringToDate, 18

StripFromLastOccurance, 23

T
Text_Format.sii, 25

Text_FormattedLine.i, 25

Text_RemoveTrailingCr, 25

Text_RTrim, 25

Text_Trim, 25

TS_Compose, 20

TS_Compose2, 20

TS_ExtractDate, 19

TS_ExtractTime, 19

TS_SysTime, 19

V
VdfQuery_ExcludeField, 8

VdfQuery_ExcludeFile, 7, 8

Virtual Print Engine (VPE), 39

W
WeekToDate, 18

Y
Year2to4, 18

YearMaxWeek, 18

