
IDE Insights 1 - Component Code Markers.doc Page 1

IIDDEE IInnssiigghhttss –– PPaarrtt 11

CCoommppoonneenntt CCooddee MMaarrkkeerrss
Date: July 17, 2003
© 2002 Data Access Worldwide
Document responsible: John van Houten

The information in this document pertains to Visual DataFlex version 9.1. The information is
provided “as-is”. The author accepts no responsibility for the accuracy of the presented
information.

The VDF 9.1 IDE has much better support for integrating custom wizard applications for building
components. If you are interested in building a wizard or any other code generator, then the
following information should be useful…

The IDE’s Visual Designer maintains a set of special markers inside the source code of each
component file. These markers are parsed whenever a component is opened, and re-generated
when the component is written.

Here is a brief description of each special marker...

//AB-StoreTopStart
//AB-StoreTopEnd

These markers mark the block of custom code between an object declaration and the IDE
generated property settings for that object.

//AB-StoreStart
//AB-StoreEnd

These markers mark the block of custom code between the IDE generated property settings of an
object (and any nested IDE generated objects) and the End_Object statement

//AB-IgnoreStart
//AB-IgnoreEnd

These markers denote a block of code that is not read in when the component is opened in the
IDE. The IDE essentially discards any code that lies between these markers when the component
is opened. Typically, when the component is saved, the IDE will regenerate a new section of code
between these markers.

//AB-RegisterInterfaceStart
//AB-RegisterInterfaceEnd

These markers are used by Web Object components that would be compiled into a Web Server
Application. They surround the list of declarations that register the external interface a Web
Object. For example a Web Browser Object's registered interface would be declared here. In the
case of a WBO the register interface section would have to appear inside the
cWebBusinessProcess object.

The only code that should exist between these markers are "Send RegisterInterface" statements.
All other code is discarded by the IDE when the component is opened. A Send RegisterInterface

IDE Insights 1 - Component Code Markers.doc Page 2

statement should be written as follows (it is better if the statement can be written all on one line, I
have broken it here for readability).

Send RegisterInterface msg_{MethodName} ;
 "msg_{MethodName}" ;
 "{ParamType1..n} {ParamName1..n}" ;
 "{Description}"

//AB-MenuAutogen

This marker can be used in an MDI Application. The marker would appear inside the Panel object
of the MDI Application component. The marker sets a special flag in the IDE to tell it to
automatically generate the menu bar each time the component is saved. The Menu Bar consists
of standard File, Navigate, Windows and Help Menus. In addition a View and Report menu are
generated containing options for opening each View and Report component that belongs to the
application.

This marker is controlled by the "Auto-Generate Menus" checkbox in the MDI Panel Properties
dialog. It is hoped that this marker will become obsolete once the IDE supports better menu
modeling.

//AB-MenuPackage
//AB-End

This marker is used in the same types of components as //AB-MenuAutogen. This marker and
//AB-MenuAutogen are mutually exclusive. In-between this marker and the //AB-End marker, the
IDE maintains the name of a package file that contains the component’s menubar object
declarations.

This marker is controlled by the "Menu Package" textbox in the MDI Panel Properties dialog. It is
hoped that this marker will become obsolete once the IDE supports better menu modeling.

//AB-ToolbarPackage
//AB-End

This marker serves the same purpose for an MDI Application's toolbar as //AB-MenuPackage
does for its menu. It is also hoped that this marker will become obsolete once the IDE supports
better toolbar modeling.

//AB-StatusBarPackage
//AB-End

This marker serves the same purpose for an MDI Application's statusbar as //AB-MenuPackage
does for its menu. It is also hoped that this marker will become obsolete once the IDE supports
better statusbar modeling.

//AB-ViewStart
//AB-ViewEnd

These markers appear inside any object that is designed to support "component nesting". For
example, an AppClientArea object supports nesting of View, Lookup, Dialog, Report and
Business Process components. A cWebApp object supports nesting of BusinessProcess and
Web Object components. Between these markers, the IDE maintains a list of Use statements for
each nested component.

//AB-DDOStart

IDE Insights 1 - Component Code Markers.doc Page 3

//AB-DDOEnd

These markers appear inside any object that is designed to support data dictionary object
structure nesting. For example, a dbView, a BusinessProcess, or a dbTabView. Between these
markers, the IDE maintains a structure of data dictionary object declarations.

//AB/

This is a very useful and flexible marker. It is used to store a property (or even an object
declaration) which is executed in the IDE's Visual Designer but is saved as a comment (not
executed at runtime). This is how the IDE maintains Size and Location properties for non-visual
components such as cWebBusinessProcess, cApplication, Array, or SaveAsDialog. If you want a
property to be modeled in this way, then you must declare the property in the class's meta-data
as “Pseudo”. For example...

Property No_Visible Pseudo Complex Location 0 0

There are some others markers however they have been obsolete since VDF 8.2. Here is a list of
those obsolete markers:

//AB-PanelStoreStart
//AB-PanelStoreEnd
//AB-PanelStoreTopStart
//AB-PanelStoreTopEnd

//AB-ClientStoreStart
//AB-ClientStoreEnd
//AB-ClientStoreTopStart
//AB-ClientStoreTopEnd

